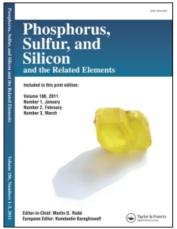
This article was downloaded by:


On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

1,1-ORGANOBORATION OF STANNYLETHYNYLPHOSPHANES

Bernd Wrackmeyer^a; Sabine Kundler^a; Armando Ariza-Castolo^a

^a Laboratorium für Anorganische Chemie, Universität Bayreuth, Bayreuth, Germany

To cite this Article Wrackmeyer, Bernd , Kundler, Sabine and Ariza-Castolo, Armando(1994) '1,1-ORGANOBORATION OF STANNYLETHYNYLPHOSPHANES', Phosphorus, Sulfur, and Silicon and the Related Elements, 91: 1, 229 - 239

To link to this Article: DOI: 10.1080/10426509408021949

URL: http://dx.doi.org/10.1080/10426509408021949

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

1,1-ORGANOBORATION OF STANNYLETHYNYLPHOSPHANES

BERND WRACKMEYER,* SABINE KUNDLER and ARMANDO ARIZA-CASTOLO†

Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Germany

(Received July 7, 1994)

Bis(trimethylstannylethynyl)phenylphosphane (1) reacts regio- and stereoselectively via 1,1-organoboration with one equivalent of triethylborane (4a) or triisopropylborane (4b) to give the (Z)-alkene derivatives 5a and 5b, respectively, in quantitative yield. With an excess of 4a the bis(alkenyl)phosphane 6a is formed ((Z)-configuration of both alkenyl groups). The reaction between bis(dimethylphosphanylethynyl)dimethyltin (2) and 4a leads to a complex reaction mixture, whereas bis(diphenylphosphanylethynyl)dimethyltin (3) reacts with 4a to give selectively the organometallic substituted stannole derivative 8a. In this case, a zwitterionic intermediate (9a) was identified by ¹H-, ¹¹B-, ¹³C-, ³¹P and ¹¹⁹Sn NMR. In 9a a positively charged triorganotin fragment is stabilized by intramolecular π-coordination to the C=C bond of an alkynylborate group. The reaction between 3 and 4b affords a mixture (12:1) of the stannole derivative 8b and the 1-stanna-4-bora-2,5-cyclohexadiene derivative 10b. All compounds were characterized by multinuclear NMR, and various coupling signs have been determined for the first time.

Key words: 1-Alkynylphosphanes, organotin substituted, 1,1-organoboration, tin cations, triorgano, coordination, σ and π , multinuclear NMR, coupling signs.

INTRODUCTION

The 1,1-organoboration of alkynyltin compounds has opened convenient routes to numerous organometallic-substituted alkenes and heterocyclic compounds. Recently, the mechanism of this reaction has been firmly established by the isolation and structural characterization of zwitterionic intermediates in which a triorganotin cation is coordinated to the C=C bond of an alkynylborate fragment, as shown schematically in A in Equation (1).

If the substituent R^1 is a functional group or contains a donor group (e.g., $R^1 = CH_2NMe_2$) the synthetic potential increases further, and zwitterionic intermediates similar to A have been observed.⁵ The reactivity of the Sn—C \equiv bond ensures that the 1,1-organoboration proceeds under mild reaction conditions for a wide range of different substituents R^1 . When ethynylphosphanes of the type Me_2P —C \equiv CH,

^{*}Author to whom correspondence should be addressed.

[†]On leave from Centro de Investigacion y de Estudios Avanzados del I.P.N., Departamento de Quimica, A.P. 14-740, 07000 Mexico D.F., Mexico.

Ph₂P—C \equiv CH or PhP(C \equiv CH)₂ are treated with triethylborane no reaction takes place, even after prolonged heating up to 100°C in boiling triethylborane. It is expected that the replacement of the terminal \equiv C—H bond by the \equiv C—Sn bond activates these alkynylphosphanes in order to carry out 1,1-organoboration reactions. One object of the present study concerns the question whether the usual stereochemistry in the products from 1,1-organoborations [cis position of stannyl and boryl group at the C \equiv C bond as shown in Equation (1)] is affected by the presence of the phosphanyl substituent. Other interesting problems are related to ³¹P NMR parameters, in particular to coupling constants and their signs in the organometallic substituted alkene derivatives as the expected products. For these purposes we have prepared the compounds 1–3 studied their reactivity towards triethylborane (Et₃B, 4a) and triisopropylborane (*i*Pr₃B, 4b).

$$Ph-P(C = C-SnMe_3)_2$$
 $Me_2Sn(C = C-PMe_2)_2$ $Me_2Sn(C = C-PPh_2)_2$
1 2 3

RESULTS AND DISCUSSION

Synthesis of the Stannylethynylphosphanes 1-3

For the synthesis of 1-3, the ethynylphosphanes $PhP(C = CH)_2$, $Me_2P - C = CH$ and $Ph_2P - C = CH$ were lithiated in hexane by treatment with two equivalents (1) or one equivalent (2, 3) of butyllithium. The reactions between these lithiated alkynes and trimethyltin chloride or dimethyltin dichloride afforded the alkynes 1, 2, and 3, respectively [Equations (2, 3, 4)].

$$Ph-P(C = CH)_{2}^{+} \xrightarrow{+ 2 nBuLi} Ph-P(C = CLi)_{2}^{+} \xrightarrow{+ 2 Me_{3}SnCl} Ph-P(C = C-SnMe_{3})_{2} (2)$$

$$2 \text{ Me}_2\text{P-C=CH} \xrightarrow{+2 \text{ nBuLi}} 2 \text{ Me}_2\text{P-C=CLi} \xrightarrow{+\text{ Me}_2\text{SnCl}_2} \text{ Me}_2\text{Sn(C=C-PMe}_2)_2 (3)$$

$$2 \text{ Ph}_2\text{P-C} = \text{CH} \xrightarrow{+} \frac{2 \text{ nBuLi}}{-2 \text{ nBuH}} 2 \text{ Ph}_2\text{P-C} = \text{CLi} \xrightarrow{+} \frac{\text{Me}_2 \text{SnCl}_2}{-2 \text{ LiCl}} \rightarrow \text{Me}_2\text{Sn}(\text{C} = \text{C-PPh}_2)_2$$
(4)

Table I lists ¹³C, ³¹P and ¹¹⁹Sn NMR data of 1-3. The compounds 1 and 3 were obtained in high purity, whereas several attempts at the synthesis of 2 always gave

Comp.			δ ³¹ P	δ ¹¹⁹ Sn		
No.	P- C=	Sn-C=	P- <i>Ph</i> /P- <i>Me</i>	Sn- <i>Me</i>		
1	103.9 [56.9] (13.8)	115.8 [368.1] (4.9)	134.4 (i), 132.4(o) [5.0] (21.7) (< 1.0) 129.0 (m),129.4 (p) (7.9) (< 1.0)	-8.2 [402.6]	-55.6 [16.6]	-63.0 (16.6)
2	113.4 [94.3] (30.9)	106.5 [555.2] (10.6)	14.1 [7.0] (8.2)	-6.1 [495.4] (7.0)	-65.8 [12.5]	-160.8 (12.5)
2′	114.6 [n.m.] (33.7)	106.6 ^[b] [554.8] (11.1) 113.4 ^[c]	13.7 [7.9] (8.0)	-6.1 [495.4]	-65.1 [12.5]	-167.0 (12.5)
3	107.7 [90.8] (17.6)	112.6 [532.6] (6.1)	135.9 (i), 132.5 (o) (6.1) (20.6) 128.6 (m),129.2 (p) (7.6) (<1.0)	-5.6 [495.9]	-32.7 [29.1]	-157.1 (29.1)

TABLE I

13C, 31P and 119Sn NMR data[a] of the stannylethynylphosphanes 1-3

[c] Sn-C=C-Sn

mixtures. The NMR spectroscopic analysis of these mixtures showed that the major impurity is 2' which decomposes further, because of the lability of the Sn—C= bond, when the solutions are kept at room temperature. This is evident from ³¹P and ¹¹⁹Sn NMR spectra which show an increasing number of additional signals, all typical of the structural units in 2', indicative of further exchange processes.

1,1-Organoboration of the Stannylethynylphosphanes

The reaction between 1 and one equivalent of Et_3B (4a) proceeds slowly between $-30^{\circ}C$ and room temperature to give selectively the (Z)-alkene 5a [Equation (5a)], and in the presence of an excess of 4a, the bis(alkenyl)phosphane 6a is formed [Equation (5b)]. Treatment of 1 with iPr_3B (4b) affords only 5b [Equation (5a)], even in the presence of a large excess of 4b and after heating to $60^{\circ}C$ for 6 h. Heating for longer periods or at higher temperature causes extensive decomposition. All alkenes 5 and 6 are formed selectively free of other isomers, and they are obtained in quantitative yield. Prolonged UV irradiation or heating to reflux in benzene solution induces decomposition. Rearrangement of the (Z)-alkenes 5a, b

[[]a] Compound 1 in C_6D_6 and compounds 2, 2' and 3 in CDCl₃, all at $25^{\circ}C$.

[[]b] $^{4}J(^{119}Sn^{13}C) = 1.8 Hz.$

or **6a** to the (E)-alkenes (potential precursors of heterocycles such as phospholes) was not observed.

Treatment of a CDCl₃-solution containing 2 and 2' (ratio ca. 4:1), together with a small amount of other alkynes of similar type, with an excess of triethylborane leads to a complex reaction mixture containing many different species which could not be analysed by ¹H or ¹³C NMR as yet. ³¹P NMR spectra are also not very helpful since the nature of this mixture is further complicated by the fact that Et₃B is coordinated more or less strongly to the various Me₂P-groups. In addition,

intramolecular P—B coordination is also possible, once the sequence of 1,1-organoboration reactions has reached the stage of stannole formation (as in 8, vide infra). There are also several ¹¹⁹Sn NMR signals of appreciable intensity. One signal at δ^{119} Sn = +35.8 [$^2J(^{119}$ Sn 31 P) = 40.0 and 78.0 Hz] is tentatively assigned to the stannole 7a with a structure analogous to that of the stannoles 8 [see Equation (6)].

$$Me_{2}Sn(C \equiv C-PPh_{2})_{2} + R_{3}B$$

$$3 \qquad 4a,b$$

$$(a) \downarrow \qquad R = Et, /Pr$$

$$PPh_{2} \qquad Ph_{2}P$$

$$Ph_{2}P \qquad R$$

$$Ph_{2}P \qquad R$$

$$Ph_{2}P \qquad Ph_{2}P \qquad R$$

$$Ph_{2}P \qquad Ph_{2}P \qquad Ph_{2}P$$

TABLE II

¹³C, ¹¹B, ³¹P and ¹¹⁹Sn NMR data^[a] of the alkenyl derivatives 5 and 6 and of the zwitterionic intermediate 9a

Comp.	δ ¹² C						δ ¹¹ Β	δ ³¹ P	δ ¹¹⁹ Sn
	P- C=	B- <i>C</i> =	=C-R	P- <i>Ph</i>	Sn-Me	BR ₂			
5a	131.7 [449.5] (28.6)	185.1 (17.7) (br)	28.1, 14.5 (48.2) (4.9)	139.5(i) ^[b] (9.8)	-4.4 ^[c] (321.9]	21.8, 9.3 (br)	+ 86.5	-32.3 [66.4]	-29.3 ^[d] (66.4)
5b	130.1 [446.0] (35.1)	188.5 (14.8) (br)	35.3 [90.0] ^[h] (37.4) 23.5, 23.4 (6.9) (5.9)	139.4(i) ^[e] (9.9)	-3.3 ^(f) [319.0]	27.0,25.5 (br) (br) 20.0,20.7 19.6,19.9		-31.7 [62.3 ^[j] 14.2]	-41.6 ^[g] (62.3)
6a	137.5 [418.5, 18.0] (65.0)	179.6 [40.0] (7.0) (br)	30.4, 13.6 [88.5] [7.8] (30.5) ^[1] (2.0)		-4.7 [314.0] (2.0)	22.3, 9.5 (br)	+85.7	-2.7 ^[k] [125.0]	-50.2 [68.0] (125.0)
9a ^[m]	134.8 [658.0] (4.9)	207.3 (br)	29.4, 15.3 [156.4](4.6) (30.0)	139.1 ^{[n}] (12.0)	3.0 [281.6] (6.7)	18.6,12.6 (br)	-1.5	-14.0 ^[0] [102.5]	+203.9 (102.5)

- [a] In C₆D₆ at 25°C, if not mentioned otherwise; coupling constants J(¹¹⁹SnX) (X = ¹³C, ³¹P) are given in square brackets and J(²¹PX) in parentheses (X = ¹³C, ³¹P, ¹¹⁹Sn); (br) denotes the broadened ¹³C resonance signal of boron-bonded carbon atoms.
- **b**] Other δ^{13} C data: 130.5 (a) (16.7), 128.6 (m) (3.9), 127.4 (p); 110.2 (19.7) (P-C=), 115.4 (5.9) (Sn-C=).
- [c] =C-SnMe₃: δ^{13} C = -8.0 [401.7].
- [d] =C-Sn Me₃: δ^{119} Sn = -63.0 (16.5).
- (e) Other δ¹³C data: 131.1 (16.7) (o), 128.5 (3.9) (m), 127.5 (p); 110.3 (21.7) (P-C=), 115.8 (402.8) (5.9) (Sn-C=).
- [f] =C-Sn Me_3 : δ^{13} C = -7.8 [402.8].
- [q] =C- $SnMe_3$: $\delta^{119}Sn = -71.6$ [14.2].
- [h] ¹³C/¹H HETCOR [based on ¹J(¹³C¹H)]: negative tilts of crosspeaks show opposite signs of ⁴J(²¹P¹H) and ³J(²¹P¹³C), and also of ³J(¹¹⁸Sn¹³C) and ⁴J(¹¹⁹Sn¹H) (see Fig. 2).
- (j) ³¹P/¹H HETCOR (based on ⁴J(³¹PC=CC⁵H) = 7.2 Hz]: postive tilt of cross peaks shows alike signs of ²J(¹¹⁸Sn³P) and ⁴J(¹¹⁹Sn¹H).
- [j] Other $\delta^{13}\text{C}$ data: 134.5 (o) (18.7), 128.5 (m), 128.2 (p).
- |k| 13 C Satellites according to 1 J(31 P^{13}C(P-C=)) = 65.0 Hz with isotope induced shift 1 Δ 13 / 12 C(31 P) = -31.7 ppb
- 13C/¹H HETCOR [based on ¹J(¹³C¹H)]: negative tilt of croos peaks shows opposite signs of ⁴J(²¹P¹H) and ³J(³¹P¹³C).
- [m] At 243 K in CDCl₂.
- [n] Other δ^{13} C data: 132.5 (21.5), 132.3 (17.4) (o), 129.0 (5.8), 128.9 (8.3) (m), 129.7, 128.7 (p), B-C=C-PPh₂: 106.5 (7.2) (br), 117.4 [39.1] (27.3), 133.6 (4.9) (i).
- [o] $*C-PPh_2: \delta^{31}P = -34.3$ [53.7].

The reaction of the alkyne 3 with an excess of Et_3B (4a) leads quantitatively to the stannole 8a [Equation (6)]. The first step of this reaction is an intermolecular 1,1-ethyloboration that leads to 9a'. Then the alkynyl group is shifted from the tin to the boron atom, affording the zwitterionic compounds 9a [Equation (6b)] in which the triorganotin cation is stabilized by π -coordination to the C=C bond. This proposed structure is fully consistent with the NMR data (vide infra), and it corresponds to that of analogous intermediates for which the molecular structures have been determined by X-ray analyses.³⁻⁵ Thus, the presence of the Ph_2P groups does not change the fundamental mechanism of the 1,1-organoboration reaction. Intramolecular 1,1-vinyloboration in 9a leads to the stannole 8a [Equation (6c)] which can be isolated as a colorless powder. The reaction between 3 and iPr_3B (4b) gave a 2:1 mixture of the stannole 8b and the 1-stanna-4-bora-2,5-cyclohexadiene 10b. The latter compound 10b is formed by intramolecular 1,1-alkyloboration in 9b. These results are in agreement with previous observations when the reactions between di-, tri- and tetra-1-alkynyltin compounds and 4b were studied.^{3-5,7}

NMR Spectroscopic Results

Relevant NMR data (except for ¹H NMR; see experimental part) are listed in the Tables I (1-3), II (5, 6 and 9) and III (8, 10b).

Comp.	δ ¹³ C						δ ¹¹ Β	δ ³¹ P	δ ¹¹⁹ Sn
No.	C(2)	C(3)	C(4)	C(5)	Sn- <i>Me</i>	BR ₂			
8a [b]	142.4 [281.9] (12.5) 140.7 ^[e] [10.8] (9.9)	186.3 [40.0] (43.0) (br)	165.3 [85.2] (22.5,25.2) 29.9,13.8 [67.9] (2.7) (21.1)	140.9 ^[e]		22.0,9.6 (br) (3.6)		-12.1 ^[C] [45.7] (2.8) -13.8 ^[d] [62.5] (2.8)	(45.7,

TABLE III

13C, 11B, 31P, 119Sn NMR data[4] of the stannole 8a

- [a] in CDCl₃; 25°C; coupling constants J(¹¹⁹SnX) (X = ¹³C, ³¹P) are given in square brackets and J(³¹PX) in parentheses (X = ¹³C, ³¹P, ¹¹⁹Sn); (br) denotes the broadened ¹³C resonance signal of a boron-bonded carbon atoms.
- [b] Some relevant NMR data of the mixture containing **8** b and **10** b: δ^{11} B (**8**b) = +53.0 (h_{1/2} = 500 Hz); δ^{31} P (**8**b) = -14.5 [41.0] (4.0), -10.6 [71.0] (4.0); δ^{119} Sn (**8**b) = -9.3 [67.0]; δ^{31} P (**10**b) = -9.3 [68.5]; δ^{119} Sn (**10**b) = -100.0 (68.5).
- [c] Tentatively assigned to P-C(2).
- [d] Tentatively assigned to P-C(5).
- [e] No assignment of δ^{13} C(i,o,m,p) of the Ph_2 P-C(2) and Ph_2 P-C(5): δ^{13} C = 132.6 (16.9) and 132.9 (19.4) (o), 128.2 (6.4) and 128.3 (6.7) (m), 128.1 and 129.0 (p).

The stereochemistry of the alkenes 5 and 6 at the C=C bond follows from the δ ¹³C values, the ^{117/119}Sn satellites according to ⁿ $J(Sn^{13}C)$ (n = 1-4), the appearance of broad ¹³C NMR signals⁸ for the boron-bonded olefinic carbon atom and from ¹H/¹H NOE difference spectra⁹ [irradiation of the ¹H(SnMe₃) or ¹H(=CR) transitions]. The unambiguous assignment of the ¹³C NMR signals for the olefinic and alkynyl carbon atoms linked directly to a tin atom requires the observation of 117/119Sn satellites. This was achieved by using the refocused INEPT pulse sequence 10 based on long range coupling constants ${}^3J({}^{13}C^1H_{S_{0Me}})$ (range between 1 to 4 Hz). 11 After optimizing the delays in the pulse sequence, meaningful spectra were obtained within 1 to 2 h (see Figure 1). The magnitude of the coupling constants "J(119Sn13C) and ⁿJ(¹¹⁹Sn¹H) lie in the expected range.^{3-5,7} This is also true for ⁿJ(³¹P¹³C) of the PPh group.¹² In contrast, the values $|{}^{1}J({}^{31}P^{13}C_{PC})|$ are fairly large already in 5a (28.6 Hz) and 5b (35.1 Hz) and increase further to 65.0 Hz in 6a (compare with $|{}^{1}J({}^{31}P^{13}C^{2.6})| = 14.3 \text{ Hz in } 4,4-\text{dimethyl-1-phenyl-1-phospha-4-stanna-2,5-}$ cyclohexadiene¹³). The magnitude of the long range coupling constant $|{}^4J({}^{119}Sn{}^{119}Sn)|$ (68 Hz) for 6a is also remarkable. However, there are no data available for comparison.

In the case of **5b**, the signs of coupling constants ${}^4J({}^{119}\mathrm{Sn}^1\mathrm{H}_{(R)})$ and ${}^2J({}^{119}\mathrm{Sn}^3\mathrm{IP})$ were determined by combining the information from 2D ${}^{13}\mathrm{C}/{}^{1}\mathrm{H}$ and ${}^{31}\mathrm{P}/{}^{1}\mathrm{H}$ het-

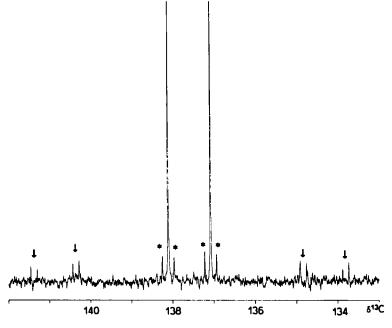


FIGURE 1 62.9 MHz 13 C NMR spectrum of the bis(alkenyl)phosphane 6a showing the 13 C resonance signal of the olefinic carbon atom linked directly to tin and phosphorus. The spectrum was recorded by using the refocused INEPT pulse sequences (based on $^3J(^{13}\text{CSnC'H}) \approx 1.0 \text{ Hz}$, repetition delay 2.5 s, acquisition time 1.5 s, 2.5 h of spectrometer time) with 14 H decoupling. The $^{117/119}$ Sn satellites corresponding to $^{1}J(\text{Sn}^{13}\text{C})$ and $^{3}J(\text{SnCP}^{13}\text{C})$, marked by arrows and asterisks, respectively, can be observed undisturbed by other signals. In contrast, in normal $^{13}\text{C}^{1}\text{H}$ NMR spectra, it was not possible to assign the 11719 Sn satellites belonging to $^{1}J(\text{Sn}^{13}\text{C})$ with certainty because of severe overlap with other ^{13}C resonance signals in that particular region.

eronuclear shift correlations (HETCOR), based on ¹J(¹³C¹H) and the long range coupling constant ${}^{4}J({}^{31}PC=CC^{1}H)$, with regard to the cross peaks for the ${}^{117/119}Sn$ satellites. The contourplot of the ¹³C/¹H HETCOR for the =C—CH moiety (Figure 2) shows a negative tilt¹⁴ of the ^{117/119}Sn satellites, which means that the signs of ³J(¹¹⁹Sn¹³C) and ⁴J(¹¹⁹Sn¹H) are opposite; the former is known to be negative ^{15,16} and therefore, ${}^4J({}^{119}\mathrm{Sn}^1\mathrm{H}) > 0$. In the ${}^{31}\mathrm{P}/{}^1\mathrm{H}$ HETCOR for the P-C=C-CHmoiety, a positive tilt of the cross peaks for the 117/119Sn satellites indicates alike signs of ${}^{2}J({}^{119}Sn^{31}P)$ and ${}^{4}J({}^{119}Sn^{1}H)$ and therefore, ${}^{2}J({}^{119}Sn^{31}P) > 0$. The information on the coupling sign of ${}^2J({}^{119}\mathrm{Sn}^{31}\mathrm{P})$ in 5, 6 and 8a (Ph₂P-group in 5-position), was also gained by 1D selective ¹H{³¹P} heteronuclear double resonance experiments.¹⁷ Although the long range coupling ⁴J(³¹P¹H_{SnMe}) across the olefinic carbon atom was not resolved in the ¹H NMR spectra, the central ¹H(=CSnMe) signal became sharper upon ³¹P irradiation. If the ³¹P irradiation frequency was set selectively with low power level to either of the ^{117/119}Sn satellites according to ²J(Sn³¹P), differential effects were observed for 117/119Sn satellites in the 1H NMR spectrum. From this it followed that the signs of ${}^2J(Sn^1H_{SnMe})$ (>0¹⁸) and ${}^2J(Sn^{31}P)$ are alike, meaning that ${}^2J({}^{119}\mathrm{Sn}^{31}\mathrm{P}) > 0$ and the reduced coupling constant ${}^2K({}^{119}\mathrm{Sn}^{31}\mathrm{P}) < 0$.

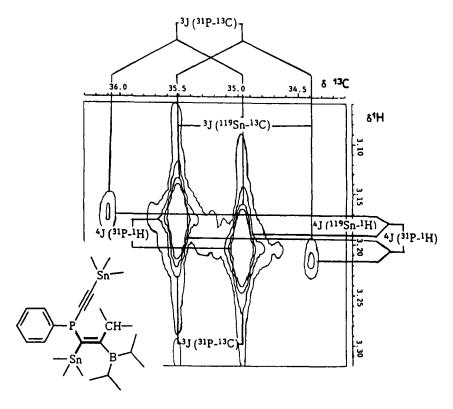


FIGURE 2 Contour plot of the 67.9 MHz 13 C/ 1 H heteronuclear shift correlation, based on 1 J(13 C/ 1 H), showing the region of the 13 C(HC—C=) resonance signal. The splitting of the central signal and of the 117 H's satellites is indicated and the negative tilt of the cross peaks can be clearly seen. The negative tilt proves that the signs of the coupling constants 4 J(31 P 14 H) and 3 J(31 P 13 C), as well as of 4 J(Sn 14 H) and 3 J(Sn 13 C) are opposite.

When the reaction between 3 and Et₃B was first monitored by ¹¹B and ³¹P NMR, the formation of 9a was indicated by the appearance of an ¹¹B NMR signal (δ – 1.9) typical of tetra-coordinate boron, ^{8,19} and of two new ³¹P NMR signals (δ – 34.3 [53.7], – 14.0 [102.5]) in a 1:1 ratio, both accompanied by ^{117/119}Sn satellites. One of these signals, close to that of 3 (δ – 32.7 [29.1]), can be assigned to the \equiv C—PPh₂ group and the other one to the \equiv C—PPh₂ group. In the ¹¹⁹Sn NMR spectrum the signal for 3 was absent and only one signal as double doublet was observed at rather high frequency [δ + 203.9 (102.5, 53.7)], the low ¹¹⁹Sn nuclear shielding being in accord with that of other zwitterionic intermediates. ^{3–5} The characteristic pattern in the ¹³C NMR spectrum in the range for alkynyl and olefinic carbon atoms (one sharp and one broad signal, each, see Table II) confirms the proposed structure. The rather large coupling constant between ¹¹⁹Sn and ³¹P, attached to the bridging alkynyl group, $|J(^{119}\text{Sn}^{31}\text{P}_{\Xi^{-}P})|$ (53.7 Hz), also supports the bonding interaction between the cationic triorganotin fragment and the C Ξ^{-} C

The stannole ring of **8a** is readily identified by the splitting pattern, different line widths [C(3)] and $^{117/119}$ Sn satellites of the 13 C NMR signals of the ring-carbon atoms C(2-5). Consistent 31 P and 119 Sn NMR data support this structural assignment and the δ 11 B value at low frequency (δ – 5.1) indicates the presence of P—B coordination. The linewidth of the corresponding 31 P resonance signal is slightly greater than that for the 31 P nuclei attached to C(5). The mixture of the heterocycles **8b** and **10b** gives exceedingly complex 13 C and 1 H NMR spectra which were not analysed. However, the NMR data of the heteronuclei 11 B, 31 P and 119 Sn are indicative (see Table III, footnote [b]). Owing to steric hindrance, the P—B coordination is weak, as shown by the broad 11 B NMR signal with δ 11 B + 53. The presence of the six-membered ring is readily shown by the typical δ 119 Sn value $^{1.3-5.7,16}$ [δ – 100.0 (68.5)] and the fitting 31 P NMR data.

EXPERIMENTAL

All preparative work and handling of compounds was carried out in a dry N_2 atmosphere, using carefully dried glassware and purified solvents. Trimethyltin- and dimethyltin chloride, diphenyl-chlorophosphane and n butyl-lithium (1.6 M in hexane) were commercial products. Triethylborane [4a]²⁰ was available, triisopropylborane [4b],²¹ dimethyl-chlorophophane,²² bis(trimethylstannylethynyl)phenylphosphane (1),⁶ ethynyldimethyl-^{23,24} and ethynyl-diphenylphosphane^{23a,24} were prepared following the literature procedures reported for the same or related compounds. – NMR spectra: JEOL FX 90 Q (^{31}P , ^{119}Sn NMR), JEOL EX 270 (^{14}H , ^{13}C NMR), Bruker AC 300, AM 500 and ARX 250 (^{14}H , ^{11}B , ^{13}C , ^{31}P , ^{119}Sn NMR); chemical shifts are given with respect to internal Me $_4$ Si (δ $^{14}H(CHCl_3/CDCl_3) = 7.24$, δ $^{14}H(C_6D_6) = 7.15$; δ ^{13}C (^{12}C), external ^{12}C , weternal ^{13}E , ^{14}B) = 32.083791 MHz), external ^{13}H 0, ^{14}G 0, ^{14}H 1, ^{15}G 1, ^{15}G 1, ^{15}G 1, ^{15}G 1, ^{15}G 2, ^{15}G 3, ^{15}G 3, ^{15}G 3, ^{15}G 4, ^{15}G 5, ^{15}G 5, ^{15}G 6, ^{15}G 7, ^{15}G 8, ^{15}G 9, $^{$

Bis(dimethylphosphanylethynyl)dimethyltin (2). A solution (183 ml) of Me₂P—C=CH (64 mmol) in THF (0.35 M; IR: ν (C=C) = 2244 cm⁻¹; ³¹P NMR: δ ³¹P -71.0) was cooled to -78°C before adding of 39 ml of n butyl-lithium/hexane (1.6 M) within 1 h. After warming the reaction mixture to room temp. and stirring for 12 h, the suspension was cooled again to -78°C and 7 g (32 mmol) of dimethyltin dichloride were added in one portion. The mixture was warmed up to room temp. and stirred for 12 h. All volatile material was removed in vacuo and the residue was extracted with hexane. After filtration, the hexane was removed in vacuo and a beige solid was left which was identified as impure 2. Attempts at further purification by recrystallization from pentane or sublimation were not successful. ¹H NMR (in CDCl₃, 300 MHz): δ ¹H = 0.30 s, 6 H, SnMe₂, ²J(¹¹⁰Sn¹H) = 68.5 Hz; 1.50 d, ²J(³¹P¹H) = 3.4 Hz, 12 H, PMe₂.

Bis(diphenylphosphanylethynyl)dimethyltin (3). A freshly prepared suspension of 18.4 g (85 mmol) of LiC=CPPh₂ in 100 ml of toluene was cooled to -78° C and 8.3 g (38 mmol) of Me₂SnCl₂ were added in one portion. The mixture was allowed to reach room temp. and was stirred for 12 h. After filtration, all volatile material was removed in vacuo and the solid residue was recrystallized from pentane to give 9.1 g (41%) of the compound 3 as colorless crystalline material (m.p. 94–96°C) which turns yellow and dark after several days. – IR: ν (C=C) 2250, 2157 cm⁻¹. – ¹H NMR (300 MHz, CDCl₃): δ ¹H [J(¹¹⁹Sn¹H)] = 0.61 [69.2] s, 6H (SnMe₂); 7.31 m, 7.64 m, 20H (PPh₂). – EI-MS: m/z (%) = 553 (100) [M⁺ – 15], 209 (17).

C₃₀H₂₆P₂Sn (567.19) calcd. C 63.53, H 4.62%; found C 63.35, H, 4.58%.

(Z)-1-Phenyl(trimethylstannylethynyl)phosphanyl-1-trimethylstannyl-2-diethylboryl-1-butene (5a). A solution of 0.7 g (1.15 mmol) of 1 in 3 ml of hexane was cooled to -78° C and 0.143 g of Et₃B were added in one portion (syringe). The cooling bath was removed, the mixture was stirred and warmed to room temp. After removing all volatile material in vacuo, a yellow oil was left. - 'H NMR (270 MHz; C_6D_6): δ 'H ($J(^{31}P^{1}H)$) [$J(^{119}Sn^{1}H)$] = 0.03 [60.1] s, 9H (\equiv C-SnMe₃); 0.02 [53.0] s, 9H (\equiv CSnMe₃); 2.27 (3.2) d, d, q ($^{2}J(^{1}H^{1}H)$ = 14.0, $^{3}J(^{1}H^{1}H)$ = 7.6 Hz) 1H, 0.82 t, ($^{3}J(^{1}H^{1}H)$ = 7.6 Hz) 3H (\equiv C-Et); 1.25-1.04 m, 4H, 0.92 t ($^{3}J(^{1}H^{1}H)$) = 7.6 Hz) 6H (BEt₂); 7.68 (8.1) d, d, d ($^{J}(^{1}H^{1}H)$) = 8.1, 1.2 Hz) 2H (o), 7.05 (2.0) d, d, d ($^{J}J(^{1}H^{1}H)$) = 8.1, 7.5 Hz) 2H (m), 6.89 t, t ($^{J}J(^{1}H^{1}H)$) = 7.5, 1.2 Hz) 1H (p) (P-Ph).

C₁,H₁₈BPSn₂ (581.73) calcd. C 45.42, H 6.58%; found C 45.65, H 6.68%.

Compound **5b** was prepared in the same way as **5a**. ¹H NMR (C_6D_6 , 270 MHz): δ ¹H ($J(^{31}P^1H)$) [$J(^{119}Sn^1H)$] = 0.15 [60.3] s, 9H (=C-SnMe₃); 0.05 [52.9] s, 9H (=C-SnMe₃); 3.19 [5.0] (7.2) d, sept ($^3J(^1H^1H)$) = 7.3 1H, 1.18 d ($^3J(^1H^1H)$) = 7.3 Hz) 3H, 1.16 d ($^3J(^1H^1H)$) = 7.3 Hz) 3H (=C- $^iP^1$); 1.33 sept ($^3J(^1H^1H)$) = 7.0 Hz) 1H, 1.48 sept ($^3J(^1H^1H)$) = 7.0 Hz) 1H, 1.10 d, 1.098 d, 1.04 d, 1.06 d (all $^3J(^1H^1H)$) = 7.0 Hz) 12 H ($BiPr_2$); 7.60 (7.0) d, d, d ($J(^1H^1H)$) = 7.0, 1.4 Hz) 2H (0) 7.10 (1.5) d, d, d ($J(^1H^1H)$) = 7.0, 7.2 Hz) 2H (m), 6.99 t, t ($J(^1H^1H)$) = 7.2, 1.4 Hz) 1H (p) (P-Ph).

C₂₅H₄₄BPSn (623.81) calcd. C 48.14, H 7.11%; found C 48.22, H 7.21%.

Bis[(Z)-1-trimethylstannyl-2-diethylboryl-1-butenyl]phenylphosphane (6a). A solution of 0.331 g (0.684 mmol) of 1 in 10 ml of hexane was cooled to -78° C and an excess of Et₃B [0.2 g (2 mmol)] was added (syringe) in one portion. After warming to room temp., the mixture was stirred for 2 h until the reaction was complete (³¹P NMR). The solvent and the excess of Et₃B were removed in vacuo. The residue, a brown oil, proved to be pure (>98%) 6a. - ¹H NMR (C₆D₆, 270 MHz): δ ¹H (J(³¹P¹H)) [J(¹¹⁹Sn¹H)] = 0.23 [51.7] s, 18H (=C=SnMe₃), 3.07 (4.8) d, d, q (²J(¹H¹H) = 14.0, ³J(¹H¹H) = 7.6 Hz) 2H, 2.77 (1.8) d, d, q (²J(¹H¹H) = 14.0, ³J(¹H¹H) = 7.6 Hz) 12H (BEt₂); 7.86 (7.0) d, d (³J(¹H¹H) = 7.5 Hz) 2H (o), 7.34 (1.5) d, t (³J(¹H¹H) = 7.5 Hz) 2H (m); 7.22 t (³J(¹H¹H) = 7.5 Hz) 1H (p) (P=Ph).

C₂₈H₅₃B₂PSn₂ (679.73) calcd. C 49.48, H 7.86%; found C 49.33, H 7.80%.

4-Ethyl-3-diethylboryl-1,1-dimethyl-2,5-bis(diphenylphosphanyl)stannole (8a). After cooling a solution of 2.27 g (4 mmol) of 3 in CH₂Cl₂ to -78° C, Et₃B (0.43 g, 4.4 mmol) was added in one portion (syringe). The resulting mixture was warmed to room temp., stirred for 24 h and then all volatile material was removed in vacuo. A colorless solid was left and recrystallization from pentane at -78° C gave 1.9 g (71%) of 8a (m.p. 66–70°C). - ¹H NMR (300 MHz, C₆D₆): δ ¹H [J(1¹⁹Sn¹H)] = -0.30 [56.6] s, 6H (SnMe₂); 1.30–0.9 m, 10H (BEt₂); 2.50 m, 2H, 1.18 t (^{3}J (^{1}H ¹H) = 7.6 Hz) 3H (=C—Et); 7.00 m, 7.43 m, 7.61 m, 20H (PPh₂, PPh₂).

C₃₆H₄₁BP₃Sn (665.25) calcd. C 65.00, H 6.21%; found C 64.76, H 6.15%.

The reaction between 3 and Et₃B (4a), carried out in CDCl₃ solution in an NMR tube, was monitored from -78 to -20° C, until the formation of the zwitterionic intermediate 9a was complete. Further warming showed that 9a rearranges to the stannole derivative 8a.

9a: 'H NMR (300 MHz, CDCl₃, -30° C): δ 'H [J(119Sn¹H)] = 0.15 [53.4] s, 6H (SnMe₂); 0.19 m, 4H, 0.67 t (${}^{3}J$ ('H'H) = 7.4 Hz) 6H (BEt₂); 1.84 m, 2H, 0.86 t (${}^{3}J$ ('H'H) = 7.6 Hz) 3H (=C-Et); 7.31-7.66 m, 20H (PPh₂, PPh₂).

The reaction between 3 and *i*Pr₃B (4b) did not start until room temp., and heating up to 60°C was required in order to produce a mixture of 8b and 10b. The complex ¹H and ¹³C NMR data of the resulting mixture were not analysed. See Table III, footnote [b] for relevant ¹¹B, ³¹P and ¹¹⁹Sn MNR data.

ACKNOWLEDGEMENTS

We are grateful for support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. A. A.-C. thanks the DAAD (Germany) and CONACYT (Mexico) for fellowships. We thank Prof. Dr. R. Köster (Mülheim a.d. Ruhr) for a generous gift of triethylborane.

REFERENCES

- 1. B. Wrackmeyer, Revs. Silicon, Germanium, Tin, Lead Compds., 6, 78 (1982).
- a) B. Wrackmeyer, Boron Chemistry—Proceedings of the 6th International Meeting on Boron Chemistry (IMEBORONVI) (Ed.: S. Hermanek), World Scientific, Singapore, 1987, p. 387-415.
 b) B. Wrackmeyer, Coord. Chem. Rev., (1995) in the press.
- a) B. Wrackmeyer, G. Kehr and R. Boese, Angew. Chem., 103, 1374 (1991); Angew. Chem. Int. Ed. Engl., 30, 1370 (1991).
 b) B. Wrackmeyer, G. Kehr, A. Sebald and J. Kümmerlen, Chem. Ber., 125, 1597 (1992).
 c) B. Wrackmeyer, G. Kehr and D. Wettinger, Inorg. Chim. Acta., 220, 161 (1994).
- 4. B. Wrackmeyer, S. Kundler and R. Boese, Chem. Ber., 126, 1361 (1993).
- 5. B. Wrackmeyer, S. Kundler, W. Milius and R. Boese, *Chem. Ber.*, 127, 333 (1994).
- 6. W. Siebert, W. E. Davidsohn and M. C. Henry, J. Organomet. Chem., 15, 69 (1968).
- 7. B. Wrackmeyer and G. Kehr, *Polyhedron*, **10**, 1497 (1991).
- a) B. Wrackmeyer and R. Köster, in R. Köster (ed.) "Houben-Weyl, Methoden der Organischen Chemie," Vol. 13/3c, Thieme, Stuttgart, 1984, pp. 377-611. b) B. Wrackmeyer, Annu. Rep. NMR Spectrosc., 20, 61-203 (1988).
- 9. T. K. M. Sanders and T. D. Mersh, Prog. Nucl. Magn. Reson. Spectrosc., 15, 353 (1982).
- 10. G. A. Morris and R. Freeman, J. Am. Chem. Soc., 101, 760 (1979).
- a) B. Wrackmeyer and K. Horchler, J. Magn. Reson., 90, 569 (1990).
 b) B. Wrackmeyer and H. Zhou, Spectrochim. Acta, 47A, 849 (1991).
 c) B. Wrackmeyer, K. Wagner, A. Sebald, L. H. Merwin and R. Boese, Magn. Reson. Chem., 29, S3 (1991).
- B. E. Mann and B. F. Taylor, "¹³C NMR Data for Organometallic Compounds," Academic Press, London, 1981.
- 13. H.-O. Berger, H. Nöth and B. Wrackmeyer, Chem. Ber., 112, 2866 (1979).
- 14. A. Bax and R. Freeman, J. Magn. Reson., 45, 177 (1981).
- 15. B. Wrackmeyer, Annu. Rep. NMR Spectrsoc., 16, 73-186 (1985).
- 16. B. Wrackmeyer, unpublished results.
- 17. W. McFarlane, Annu. Rep. NMR Spectrosc., 1, 135-163 (1968); ibid, 5A, 353-393 (1972).
- 18. W. McFarlane, J. Chem. Soc. (A), 528 (1967).
- H. Nöth and B. Wrackmeyer, "Nuclear Magnetic Resonance of Boron Compounds," in P. Diehl, E. Fluck and R. Kosfeld (eds.) "NMR—Basic Principles and Progress," Vol. 14, Springer, Berlin, 1978.
- 20. R. Köster, P. Binger and W. V. Dahlhoff, Synth. Inorg. Met.-Org. Chem., 3, 359 (1973).
- 21. E. Krause and P. Nobbe, Ber. Disch. Chem. Ges., 64, 2112 (1931).
- 22. L. Maier, Chem. Ber., 94, 3051 (1961).
- a) L. Brandsma, "Preparative Acetylenic Chemistry," 2nd edition, Elsevier, Amsterdam, 1988. b)
 B. Wrackmeyer, in R. B. King and J. J. Eisch (eds.), "Organometallic Syntheses," Vol. 3, Elsevier, New York, 1986, p. 572.
- P. Cadiot, W. Chodkiewicz, P. Borecka, C. Charrier and M. P. Simmonin, Colloq. Nat. Centr. Nat. Rech. Sci., 99 (1965).